032

REDUCTION POTENTIAL AND RELATIVE ELECTRON AFFINITY AS REACTIVITY INDEXES OF PERFLUOROALKYL HALIDES

I. Rozhkov*, G. Becker, S. Igumnov, S. Pletnev, G. Rempel and Yu. Borisov Institute of Organo-Element Compounds, Vavilov str. 28, Moscow (U.S.S.R.)

Reduction potentials of perfuoroalkyl halides $(\mathtt{R}_{p}\mathtt{X})$ on \mathtt{Pt} in CH_3CN have been determined (E_{1/2}, V, SCE) : CFJJ -1.10 (CF₃)₂CFBr -1.05 -1.00 (CF₃)₃CBr C₃F₇J -0.14 -0.09 +0.12 +0.71 $\begin{array}{cccc} & & & \\ J_2 & & +0.10 & & C_3F_7CCl(CF_3)_2 \\ (CF_3)_3CJ & +0.14 & & F-1-chloro-1-methil-cyclopentane \end{array}$ -0.97-1.02 $C_3 F_7 CJ(CF_3)_2 + 0.32$ F-1-chloro-bicyclo[4.4.0]decane -0.95 The values of the relative electron affinity (REA) of $R_{p}X$ were determined as the enthalpy of the reaction ($\Delta \text{H})$:

 $CF_3Cl^{\bullet} + R_FX \longrightarrow CF_3Cl + R_FX^{\bullet} + \Delta H$ To define ΔH we performed the quantum chemical AM1 calculations of the heats of formation for all participants of the above reaction (R_FX and corresponding radical anions). The REA (kcal/mol) are :

CF ₃ C1	0	CF ₃ Br	-10.1	CF3J	-13.7
c ₂ F ₅ Cl	-4.5	C ₂ F ₅ Br	-14.4	C ₂ F ₅ J	-17.6
(CF ₃) ₂ CFCl	-6.9	(CF ₃) ₂ CFBr	-16.5	(CF ₃) ₂ CFJ	-20.8
(CF ₃) ₃ CC1	-13.0	(CF ₃) ₃ CBr	-22.4	(CF ₃) ₃ CJ	-26.3

In accordance with their RP and REA values, perfluoroalkyl halides may be arranged in the following row which is in a good agreement with their reactivity in SET initiated reactions: $(R_F)_3CJ > (R_F)_3CBr > (R_F)_2CFJ > R_FCF_2J \simeq (R_F)_2CFBr \simeq (R_F)_3CC1$